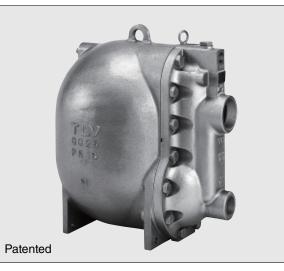
PowerTrap TLV


MODEL GP10

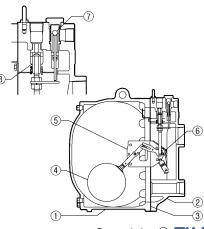
MECHANICAL PUMP FOR CONDENSATE REMOVAL AND RECOVERY

Features

Pump for a wide range of applications. Ideal for condensate removal from vented receivers and sump drainage.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability.
- 7. Cycle Counter installable as option.

Specifications


Model			GP10				
Body Material		Cast Iron	Ca	Cast Steel			
Connection	Pumped Medium Inlet & Outlet	Screwed	Screwed	Flanged			
	Motive Medium & Pump Exhaust	Screwed	Screwed	Flanged			
Size (mm)	Pumped Medium: Inlet × Outlet	80 × 50		50 × 50, 80 × 50			
	Motive Medium Inlet		25				
	Pump Exhaust Outlet		25				
Maximum Operating Pressure (MPaG) PMO			1.05				
Maximum Ope	erating Temperature (°C) TMO		185				
Motive Medium Pressure Range (MPaG)		C	0.03 – 1.05				
Maximum Allowable Back Pressure		0.05 MPa less than r	0.05 MPa less than motive medium pressure used				
Volume of Each Discharge Cycle (ℓ)		app	approximately 30				
Motive Medium*		Saturated Steam,	Saturated Steam, Compressed Air, Nitrogen				
Pumped Medium**		Steam C	ondensate, Water				
Do not use with	toxic, flammable or otherwise hazardous fl	uids		1 MPa = 10.197 kg/			

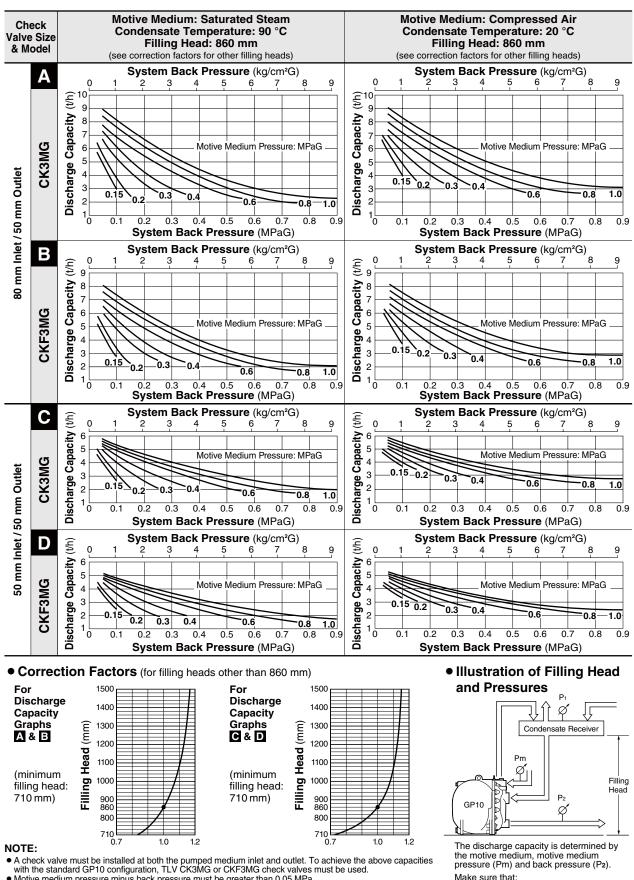
* Do not use with toxic, flammable or otherwise hazardous fluids. ** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids. PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (MPaG) PMA: 1.4 (Cast Iron), 1.6 (Cast Steel)

Maximum Allowable Temperature (°C) TMA: 220

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted. CAUTION

No.	Description		Material	JIS	ASTM/AISI*	
1) Body			Cast Iron	FC250	A126 CI.B	
U	1 Body		Cast Steel**	—	A216 Gr.WCB	
(2) Cover			Cast Iron	FC250	A126 CI.B	
Q	Cover		Cast Steel**	—	A216 Gr.WCB	
3	Cover Gasket		Graphite Compound	—	_	
4	Float		Stainless Steel	SUS316L/303	AISI316L/303	
(5)	Lever Unit		Stainless Steel	—	—	
6	Snap-action Unit		Stainless Steel	—	—	
	Motive Medium Intake Valve Unit	Intake Valve	Stainless Steel	SUS303/440C	AISI303/440C	
7		Valve Seat	Cast Stainless Steel/ Stainless Steel	/ SUS440C	A351 Gr.CF8/ AISI440C	
	Exhaust Valve Unit	Exhaust Valve	Stainless Steel	SUS303/440C	AISI303/440C	
8		Valve Seat	Stainless Steel	SUS420F	AISI420F	
(9)	Check Valve***	CK3MG	Cast Stainless Steel	—	A351 Gr.CF8	
9		CKF3MG	Cast Stainless Steel	—	A351 Gr.CF8	

* Equivalent ** Option: Cast Stainless Steel

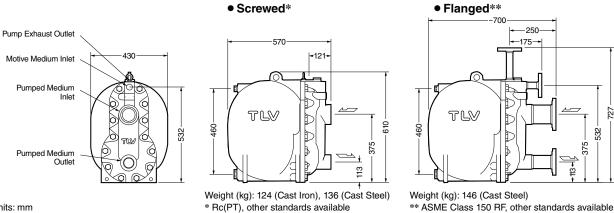

*** Not shown, model depends on GP10 connection: CK3MG for screwed, CKF3MG for flanged

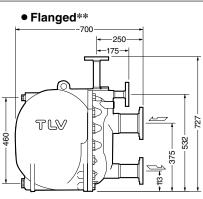
Copyright © TLV

TLV

Consulting & Engineering Service

Discharge Capacity


A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GP10 configuration, TLV CK3MG or CKF3MG check valves must be used.
Motive medium pressure minus back pressure must be greater than 0.05 MPa.
In closed system applications, the motive medium must be compatible with the liquid being pumped. If a non-condensable gas such as air or nitrogen is used as the motive medium, consult TLV for assistance.
A strainer must be installed at the motive medium and pumped medium inlets


Discharge Capacity × Correction Factor > Required Flow Rate

TLV

Consulting & Engineering Service

Dimensions

Units: mm

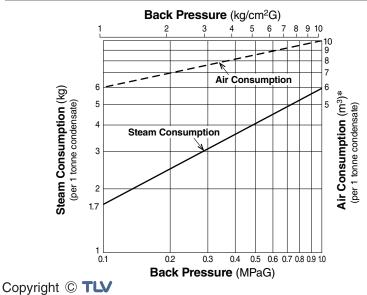
Size of Receiver/Reservoir

The receiver/reservoir must have a capacity sufficient to store the condensate produced during the PowerTrap operation and discharge. A receiver will generally be larger than a reservoir because it must handle the condensate both as a liquid and as flash steam, and separate one from the other so that only condensate is sent to the PowerTrap.

(1) Size of Receiver (flash steam is involved)

(Length: 1 m)

()		
Flash Steam up to (kg/h)	Receiver Diameter mm (in)	Vent Pipe Diameter mm (in)
25	80 (3)	25 (1)
50	100 (4)	50 (2)
75	125 (5)	50 (2)
100	150 (6)	80 (3)
150	200 (8)	80 (3)
200	200 (8)	100 (4)
300	250 (10)	125 (5)
400	300 (12)	125 (5)
500	350 (14)	150 (6)
700	400 (16)	200 (8)
800	450 (18)	200 (8)
1000	500 (20)	200 (8)
1100	500 (20)	250 (10)
1400	550 (22)	250 (10)
1500	600 (24)	250 (10)


③ If flash steam is condensed before it enters the receiver/reservoir, compare tables (1) and (2) and choose the larger of the two resultant sizes.

Size of Reservoir (flash steam is not involved)

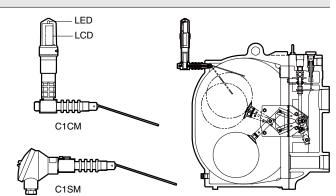
Amount of Condensate	Reservoir Diameter (mm) and Length (m)						
(kg/h)	40	50	80	100	150	200	250
300 or less	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P₂) equals 2 or greater (when $Pm \div P_2 \ge 2$).

Steam or Air Consumption (Motive Medium)

* Equivalent consumption of air at 20 °C under atmospheric pressure

TLV


Consulting & Engineering Service

Cycle Counter (option)

Two types of counter can be installed on the GP10 to monitor the number of pumping cycles and help to determine the timing of maintenance, or estimate the volume of pumped condensate.

- C1CM (Counter Unit Type): Self-contained standalone unit. Includes an LCD counter display and an operation indicator LED.
- C1SM (Terminal Box Type): Designed for use with remote monitoring equipment and systems.

Intrinsically safe models are also available. See the Cycle Counter SDS for further details.

Manufacturer

Copyright © **TLV**

http://www.tlv.com

SDS M2404-00 Rev. 6/2014

Products for intended use only. Specifications subject to change without notice.